
Larry Andrews A Template for the Nearest Neighbor Problem

C/C++ Users Journal — October 2001 1

Larry Andrews

A Template for the
Nearest Neighbor
Problem
Introduction

The NNP (nearest neighbor problem) is central to the solution of
many practical applications. Also known as the “Post Office
Problem,” it describes the need to find among a group of known
positions, the point closest to some randomly chosen probe posi-
tion. Obvious uses for such an algorithm are various map-lookup
problems, cluster analysis, finite-element problems, string lookup,
and computing intermolecular contacts between two protein mole-
cules.

It is usually assumed that lots of lookups will be done against a
static dataset, so the cost of building the lookup structure is usually
less important than the cost of the lookup itself. There are many
methods in the literature for solving the NNP: kd-trees, quadtrees,
and scan-line-based methods. In 1983, MacDonald and Kalantari
[1] published an overlooked algorithm, based on what you would
now call partition trees. Their algorithm may have been overlooked
since it used a complicated double-linked tree, but simple recursion
accomplishes the same result. It is optimal (in most cases) and fast;
it has the advantage that storage is nearly linear in the number of
objects in the database. Time to build the tree is proportional to
(nlog n) for n points in the data set, and the time to retrieve the
nearest neighbor to some probe point is proportional to (log
n)(log m), where m is the dimensionality of the data.

Over the years, I have used this algorithm to solve many prob-
lems from my own work. Rewritten in five computer languages, it
has allowed me to do searches in large datasets, typically in 6, 7, 10,
or up to 36 dimensions. Computing the intermolecular contacts
between protein molecules in crystal was simple to implement and
extremely fast to execute. Just for fun, I wrote a program to draw a
line from a screen cursor to the nearest point among 20,000 random
points on the screen; it worked in real time. A simple modification
allows the method to return all points within a specified radius of
the probe point. Joining the set of near points in real time to the cur-
sor on the screen makes it look like a spider is crawling on the mon-
itor.

In translating the algorithm into C++, I needed to handle cases in
several dimensions, sometimes within a single program, so a gener-
ic solution was important. Since the algorithm itself is independent
of dimension, the creation of a template class seemed the obvious
solution. That solution is presented here.

Partitioning the Space
The algorithm begins by selecting points to add to a tree

(Neartree). The points are added one by one, and it helps if they are
selected in a somewhat random way. The method works for any
selection order, but in the worst case, the search time is O(n).

For the first two points, the space is divided by a manifold bisect-

ing the line between the two points. (For points in a plane, the bisec-
tor is a line.) From then on, each added point is examined to see
which half-plane it is in, and it is added to the Neartree node that
defined that half-plane. Another way to say the same thing is that
every point after the first two is attached in the tree to the nearer of
those two points. When two points have been added to one of the
original half-planes, the bisector of the line between those two
points is used to divide that half-plane. Figure 1 illustrates the initial
steps.

Building the Tree
Implementing the partitioning rule is simple. There are only

three cases for the condition of a Neartree node when a new point is
to be added:
1. The node is empty (just created); the new point is made the left

object.
2. The node is half full (only one point has been added, by conven-

tion, on the left); the new point is made the right object.
3. The node is full (both the right and left points have objects in

them); the new point is added to the Neartree below the nearer of
the two points.
In the third case, there is one piece of bookkeeping to be done.

The distance from the object in the node to the object below in the
tree that is farther away from the node point needs to be updated. If
the stored maximum distance is less than the distance from the node
point to the new point, then the maximum distance is updated to be
the new value. This will become crucial in speeding the search for
nearest neighbors. Listing 1 lists the template and includes the class
constructor and the code for m_fnInsert, which places the points
into the Neartree.

Finding the Nearest Neighbor
The Neartree isn’t much good without a search algorithm for it.

Every node in the Neartree has at least one node point in it, and
many have two. And many of the node points have Neartrees
descending from them. For a given probe point (p) and initial search
radius (dRadius):
1. Examine the left node object; if it is within the minimum search

radius, remember the object and decrease the search radius to the
new minimum distance.

2. Examine the right object (if it exists) and repeat the update if
appropriate.

3. For each of the Neartrees descending from the node (there may
be none, one, or two), use the triangle rule to decide whether to
search more deeply. If the rule indicates that there could be clos-
er objects below in the Neartree, then apply steps 1 and 2 to the
node below.

4. When there is no more searching to perform, return the object
nearest to the probe point.
Listing 1 includes the code for functions that implement the

search for the nearest neighbor search. The code is divided into a
public and a private portion so that the user can input a const value
for the search radius.

The Triangle Inequality
The power of this algorithm derives mostly from a simple rule

that you learned in high school geometry: the triangle inequality.
This simply states that no side of a triangle can be larger than the
sum of the lengths of the other two sides. The NNP algorithm uses

A Template for the Nearest Neighbor Problem Larry Andrews

2 C/C++ Users Journal — October 2001

Larry Andrews A Template for the Nearest Neighbor Problem

C/C++ Users Journal — October 2001 3

this rule to truncate searches earlier than they would be otherwise
(at least most of the time). The truncation reduces what would be a
linear search to O(log n).

In this algorithm, I use the rule in the following way. At any
given node, for some search point and for some search radius, the
distance from the node object to the farthest object below it in the
Neartree is known (stored during Neartree construction). Looking at
Figure 2, you see that any possible objects that are closer than the
current search radius lie only within the intersection of the circle
around the probe point (with radius, dRadius) and the circle around
the node object (with radius, dMax). If the two circles do not inter-
sect, then no object exists in the Neartree that could form a triangle
with the probe and the node object. In other words,

D - dRadius >= dMax,

where D is the distance between the probe point and the node object.
The inequality must be true if any further solutions are possible. If
there are no solutions, then I do not need to search the tree any deep-
er.

This NNP algorithm would not be as powerful if it did not use the
triangle inequality. The ability to prune branches as searches
become infeasible is what speeds the search. Reducing the search
radius as new, closer points are found further prunes the search. In
the end, only a few percent (or less) of the points in the tree are usu-
ally examined.

Changing the Distance Measure
In the example code, the distance measure is the normal

Euclidean (L2) measure. But any measure that obeys the triangle
inequality could be used, and sometimes there are advantages to
other measures. I sometimes use city block measure (L1) because it
is faster to compute, especially since it does not require a square
root. For many computations, city block measure is completely ade-
quate. For example, if you have a large dataset and want to know if
the probe point exists within the dataset, the minimum distance will
be zero if the point is in the dataset. Its distance from the probe will
be zero by any of several measures, including city block measure.

Another measure that can be used is Hamming distance (zero for
when the coordinate values are the same and one for when they are
different). So for the vectors {1,2,3} and {1,3,2}, the Hamming dis-
tance is two. It’s simple, but it would suffice to determine if a point
were within a dataset.

Finally, another simple measure is the maximum value (L-infini-
ty) measure. The distance is the absolute value of the largest of the
coordinate value differences found. For instance, for the vectors
{1,2,3} and {4,4,4}, the L-infinity distance between them is three.

Points within a Sphere
The very same Neartree that is used for finding nearest neighbors

can be used to find the contents of a spherical region. If the search
radius is not updated as new objects near the probe object are found,
then all node objects within the search radius of the probe will be
visited. In the accompanying code, those objects are returned in a
data structure std::vector<?> so that they can all be examined.

Farthest Neighbor, an Extra Benefit
While I have never needed to find the element of a dataset that is

farthest from some probe, it could be useful in some computer

graphics applications. The code to do this search can use the identi-
cal Neartree as the NNP, however, the code is subtly different. The
trick is that instead of requiring that the triangle inequality be true,
now the inequality must be false for there to be new points to be
tested. The search is truncated because the search radius grows as
the search progresses. In Figure 3, only the little shaded region
could possibly contain any new points to be tested. In other words,
once dRadius exceeds the distance from the probe point to the cur-
rent object plus the distance to the farthest object below, the search
on that branch is stopped.

Limitations
The first obvious limitation of this algorithm is that it requires a

metric space with a measure that obeys the triangle inequality.
While there are lots of cases where that is not a particular problem,
there are many database uses where no particular metric is known.
So the NNP mostly applies to geometrical problems where inexact
matching is appropriate.

A second, more subtle limitation is that ordering of the input
while building the Neartree can have large effects on the retrieval
speed. As an example of worst-case behavior, consider a one-
dimensional problem where integers are input in ascending order. In
the whole tree, no left object will have a descending tree; if the
probe is closest to the last object that was added to the Neartree,
every object in the tree will have been visited to find it.

In most cases, there is some mitigating factor. For example, con-
sider the case of a protein molecule. The entire molecule may be a
single chain of amino acid residues, and they will usually be input in
serial order so that each residue input is close to the previous, simi-
lar to the worst case scenario above. However, the whole molecule
folds up, and as the molecule snakes around, the near contact with
itself makes the Neartree better conditioned. Experiments of adding
atoms randomly or of trying to choose initial atoms widely separat-
ed did not noticeably or consistently affect the speed of retrieval.

One consideration about using this NNP algorithm is that you
cannot delete or update nodes without rebuilding the tree. Because
the distance from any node object to the farthest object below is
stored, moving any object would require updating all dMax’s up to
the root. One possible way around this problem for small perturba-
tions is to save the magnitude of the shift vector and add it to the
search radius; then after searching, it would be necessary to recon-
firm the matches.

Implementation
The class the CNearTree template acts upon must provide a few

methods: operator double and operator- are required. I usually
include a constructor, a copy constructor, and a destructor. I have
included a sample program using a simple class in the online source
(available at <www.cuj.com/code>). A complete program that uses
double as the parameterized type is:

#include "TNear.h"
#include <cstdio>
void main()
{ CNearTree< double > dT;
double dNear;

// store 1.5 in the tree
dT.m_fnInsert(1.5);

// find the nearest point to 2.0
if (dT.m_bfnNearestNeighbor(

A Template for the Nearest Neighbor Problem Larry Andrews

4 C/C++ Users Journal — October 2001

Larry Andrews A Template for the Nearest Neighbor Problem

C/C++ Users Journal — October 2001 5

10000.0, dNear, 2.0)) }
printf("%f\n",double(dNear-2.0); }

and it should print 0.5 (that’s how far 2.0 is from 1.5)

Internal vs. External Storage
As written, the template code stores the node objects in the tree

itself. Copying the objects into the Neartree causes a small time
penalty, but if the objects are also being stored outside in another
data structure, then there is also a space penalty. One large advan-
tage to copying the objects into the tree is that they are then protect-
ed from modification or deletion. But the template can easily be
modified to only store pointers to the data, or the objects could be
modified to be pointers and the template left unchanged. ❏

Reference
[1] Iraj Kalantari and Gerard McDonald. “A Data Structure and an

Algorithm for the Nearest Point,” IEEE Transactions on
Software Engineering, September 1983.

Larry Andrews has a Ph.D. in chemistry from
the University of Washington in Seattle. He
can be reached at andrewsl@ix.netcom.com.

#if !defined(TNEAR_H_INCLUDED)
#define TNEAR_H_INCLUDED

#include <limits.h>
#include <float.h>
#include <math.h>
#include <vector>

//==
template <typename T> class CNearTree
{

T * m_ptLeft; // left object stored in this node
T * m_ptRight;// right object stored in this node
double m_dMaxLeft; //longest distance from the left object

// to anything below it in the tree
double m_dMaxRight;// longest distance from the right object

// to anything below it in the tree
CNearTree * m_pLeftBranch; //tree descending from the left
CNearTree * m_pRightBranch; //tree descending from the right

public:

//==
CNearTree(void) // constructor
{

m_ptLeft = 0;
m_ptRight = 0;
m_pLeftBranch = 0;
m_pRightBranch = 0;
m_dMaxLeft = DBL_MIN;
m_dMaxRight = DBL_MIN;

} // CNearTree constructor

//==
~CNearTree(void) // destructor
{

delete m_pLeftBranch ; m_pLeftBranch =0;
delete m_pRightBranch ; m_pRightBranch =0;
delete m_ptLeft ; m_ptLeft =0;
delete m_ptRight ; m_ptRight =0;

Listing 1: Template for the nearest neighbor search

A Template for the Nearest Neighbor Problem Larry Andrews

6 C/C++ Users Journal — October 2001

m_dMaxLeft = DBL_MIN;
m_dMaxRight = DBL_MIN;

} // ~CNearTree

//==
void m_fnInsert(const T& t)
{

// do a bit of precomputing if possible so that we can
// reduce the number of calls to operator 'double' as much
// as possible; 'double' might use square roots
double dTempRight = 0;
double dTempLeft = 0;
if (m_ptRight != 0)
{

dTempRight = fabs(double(t - *m_ptRight));
dTempLeft = fabs(double(t - *m_ptLeft));

}
if (m_ptLeft == 0)
{

m_ptLeft = new T(t);
}
else if (m_ptRight == 0)
{

m_ptRight = new T(t);
}
else if (dTempLeft > dTempRight)
{

if (m_pRightBranch==0) m_pRightBranch=new CNearTree;
// note that the next line assumes that m_dMaxRight
// is negative for a new node
if (m_dMaxRight<dTempRight) m_dMaxRight=dTempRight;
m_pRightBranch->m_fnInsert(t);

}
else
{

if (m_pLeftBranch ==0) m_pLeftBranch=new CNearTree;
// note that the next line assumes that m_dMaxLeft
// is negative for a new node
if (m_dMaxLeft<dTempLeft) m_dMaxLeft=dTempLeft;
m_pLeftBranch->m_fnInsert(t);

}
} // m_fnInsert

//==
bool m_bfnNearestNeighbor (const double& dRadius,

T& tClosest, const T& t) const
{

double dSearchRadius = dRadius;
return (m_bfnNearest (dSearchRadius, tClosest, t));

} // m_bfnNearestNeighbor

//==
bool m_bfnFarthestNeighbor (T& tFarthest, const T& t) const
{

double dSearchRadius = DBL_MIN;
return (m_bfnFindFarthest (dSearchRadius, tFarthest, t));

} // m_bfnFarthestNeighbor

//==
long m_lfnFindInSphere (const double& dRadius,

std::vector< T >& tClosest, const T& t) const
{ // t is the probe point, tClosest is a vector of contacts

// clear the contents of the return vector so that
// things don't accidentally accumulate
tClosest.clear();
return (m_lfnInSphere(dRadius, tClosest, t));

} // m_lfnFindInSphere

private:

//==
bool m_bfnNearest (double& dRadius,

T& tClosest, const T& t) const
{

double dTempRadius;
bool bRet = false;
// first test each of the left and right positions to see
// if one holds a point nearer than the nearest so far.
if ((m_ptLeft!=0) &&
((dTempRadius = fabs(double(t-*m_ptLeft))) <= dRadius))

Listing 1: continued

{
dRadius = dTempRadius;
tClosest = *m_ptLeft;
bRet = true;

}
if ((m_ptRight!=0) &&
((dTempRadius = fabs(double(t-*m_ptRight)))<=dRadius))

{
dRadius = dTempRadius;
tClosest = *m_ptRight;
bRet = true;

}
// Now we test to see if the branches below might hold an
// object nearer than the best so far found. The triangle
// rule is used to test whether it's even necessary to
// descend.
if ((m_pLeftBranch != 0) &&
((dRadius+m_dMaxLeft) >= fabs(double(t-*m_ptLeft))))

{
bRet|=m_pLeftBranch->m_bfnNearest(dRadius,tClosest,t);

}

if ((m_pRightBranch != 0) &&
((dRadius+m_dMaxRight) >= fabs(double(t-*m_ptRight))))

{
bRet|=m_pRightBranch->m_bfnNearest(dRadius,tClosest,t);

}
return (bRet);

}; // m_bfnNearest

//==
long m_lfnInSphere (const double& dRadius,

std::vector< T >& tClosest, const T& t) const
{ // t is the probe point, tClosest is a vector of contacts

long lReturn = 0;
// first test each of the left and right positions to see
// if one holds a point nearer than the search radius.
if ((m_ptLeft!=0) && (fabs(double(t-*m_ptLeft))<=dRadius))
{

tClosest.push_back(*m_ptLeft); // It's a keeper
lReturn++ ;

}
if ((m_ptRight!=0)&&(fabs(double(t-*m_ptRight))<=dRadius))
{

tClosest.push_back(*m_ptRight); // It's a keeper
lReturn++ ;

}
//
// Now we test to see if the branches below might hold an
// object nearer than the search radius. The triangle rule
// is used to test whether it's even necessary to descend.
//
if ((m_pLeftBranch != 0) &&

((dRadius+m_dMaxLeft) >= fabs(double(t-*m_ptLeft))))
{

lReturn +=
m_pLeftBranch->m_lfnInSphere(dRadius, tClosest, t);

}
if ((m_pRightBranch != 0) &&

((dRadius+m_dMaxRight) >= fabs(double(t-*m_ptRight))))
{

lReturn +=
m_pRightBranch->m_lfnInSphere(dRadius, tClosest, t);

}
return (lReturn);

} // m_lfnInSphere

//==
bool m_bfnFindFarthest (double& dRad,

T& tFarthest, const T& t) const
{

// deleted from the journal listing since it is quite similar
// to nearest

return (false);
}; // m_bfnFindFarthest

}; // template class TNear

#endif // !defined(TNEAR_H_INCLUDED)

— End of Listing —

Listing 1: continued

Larry Andrews A Template for the Nearest Neighbor Problem

C/C++ Users Journal — October 2001 7

1

23

4

Points in this
segment will
descend from
point 4 in the
Neartree

Points on this
side will descend
from point 1 in
the Neartree

Points on this
side will descend
from point 2 in
the Neartree

Figure 1: Initial steps in building the Neartree by parti-
tioning the space. The numbers indicate the order in which
the objects were inserted

Probe point

Node object in
Neartree

Current
search
radius

Largest distance to
any point below in
the Neartree

Radius shrinks as the
nearest neighbor search
continues

Only points in the crosshatched (grayed) region can satisfy the
triangle inequality; they satisfy the triangle inequality for the two
circle centers.

Figure 2: A 2-dimensional example of one step in the
Nearest Neighbor Algorithm

Node object in
Neartree

Current
search
radius

Largest distance to
any point below in
the Neartree

Radius grows as the
farthest neighbor search
continues

Probe point

Only points in the crosshatched (grayed) region ar feasible;
they fail the triangle inequality for the two circle centers.

Figure 3: A 2-dimensional example of one step in the
Farthest Neighbor Algorithm

